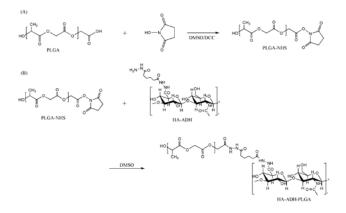
HA-PLGA Nanoparticles As Novel Drug Carrier for Cancer Therapeutics Jung Kyu Park,¹ Ji Seok Kim,¹ Hyungu Kang,² Sei Kwang Hahn^{*,1,2}

¹ Department of Materials Science and Engineering, ² POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea (*skhanb@postech.ac.kr)

Statement of Purpose: Hyaluronic acid (HA) is a biodegradable, biocompatible, non-immunogenic, and non-inflammatory linear polysaccharide [1]. Because of the excellent physicochemical properties, HA has been widely used for arthritis treatment, ophthalmic surgery, drug delivery, and tissue engineering. The biodegradable poly(lactic-*co*-glycolic acid) [PLGA] grafted with HA (HA-PLGA) has been used as a novel tissue engineering scaffold [2]. In this work, adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and conjugated with PLGA. The HA-PLGA nanoparticle was characterized and assessed as a novel anti-cancer drug carrier with passive targeting effect.

Methods:


Synthesis of HA-ADH: HA-ADH was synthesized and purified as described elsewhere [3]. The degree of substitution by ADH was determined with ¹H-NMR according to the analysis by Luo *et al.* [3].

Conjugation of HA-ADH with PLGA: PLGA was dissolved in dimethyl sulfoxide (DMSO, 5 ml). The addition of NHS and DCC in PLGA solution resulted in successful activation of functional end group of PLGA. Then, HA-ADH was dissolved in 5 mL of dimethyl sulfoxide (DMSO) and then mixed with activated PLGA resulting in successful conjugation of HA-PLGA. The ratio of PLGA to HA was changed from 1/4 to 1/40.

Preparation of HA-PLGA nanopaticles: HA-PLGA nanoparticles were prepared by the dialysis and freeze drying method.

Characterization of HA-PLGA nanopaticles: HA-PLGA copolymer was analyzed by ¹H NMR and gel permeation chromatography (GPC). The particle size was measured by ELS-8000.

Results/Discussion: Figure 1 shows the schematic representation of HA-PLGA synthesis. Interestingly, the recovered HA-ADH with high degree of ADH modification was soluble in DMSO and used for the preparation of HA-PLGA. HA-ADH was conjugated to PLGA activated with NHS and DCC in DMSO. The mean particle size, which was in the range of 250 nm \sim 150 nm, could be controlled by changing the molar ratio of HA to PLGA and the molecular weight of PLGA. Figure 2 shows the particle size distributions of HA-PLGA nanoparticles in water according to the ratio of PLGA to HA. The novel HA-PLGA nanoparticle was used to incorporate paclitaxel in the core of HA-PLGA polymeric micelle system. The drug loading was higher than 70 wt%. As well known, a drug delivery system with a mean particle size of 100 nm \sim 200 nm can be selectively delivered by the EPR effect. In addition, HA has recently been reported to be degraded at the HA receptor of LYVE-1 on the lymphatic endothelial cells [4]. HA-PLGA polymeric micelle system may be successfully applied for tumor target delivery for cancer therapeutics.

Figure 1. Schematic representation of HA–PLGA synthesis: (A) Activation of PLGA with NHS/DCC. (B) Conjugation of HA-ADH with the activated PLGA.

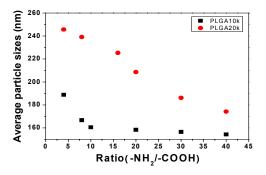


Figure 2. Size distribution of HA-PLGA according to the molar ratio of $-NH_2$ of HA-ADH to -COOH of PLGA.

Conclusions: A novel protocol for the preparation of HA-PLGA polymeric micelle system was successfully developed for tumor targeting cancer drug delivery applications. The mean particle size of HA-PLGA, which was in the range of 150 nm \sim 250 nm, could be controlled by changing reaction conditions. These novel HA-PLGA nanoparticles incorporating paclitaxel were thought to be a novel cancer drug delivery system with EPR effect. *In vivo* release test will be followed.

References:

- [1] Laurent TC. The chemistry, biology and medical applications of hyaluronan and its derivatives; Portland press: London and Miami, 1998; Chapter 3.
- [2] Yoo HS. Biomaterials. 2005;26:1925-1933.
- [3] Ohri R. J Biomed Mater Res. 2004;70A:159-165.
- [4] Prevo R. J Biol Chem. 2001;276:19420-19430.