Proliferation constant study of the CRL-1888 mouse tumor cell-line for the application of hyperthermia animal model Young Kon Kim and Eun Mi Hwang.

Dept. of Biomedical Engineering Inje University, Korea.

Purpose

This study is to investigate the proliferation characteristics of the CRL-1888 mouse tumor cell line at eleven different temperatures, which is very useful parameter for designing an interstitial thermo-seed hyperthermia animal tumor model.

Methods

The CRL-1888 mouse tumor cell line was acquired from the American Type Culture Collection (USA). Cell medium was prepared with the mixture of the Dulbecco's Modified Eagle's Medium-low glucose (Gibco, USA), 10% Fetal Bovine Serum (Gibco, USA), 1% Penicillin-Streptomycin (Gibco, USA) and 1% of the 200mM Lglutamine (Gibco, Japan). The CRL-1888 Cells were taken out from the liquid nitrogen storage and thawed in an isothermal chamber (Koma Biotech, Korea). Cells were separated from the medium using a centrifuge (MF80, Hanil, Korea). The cells were cultured in a CO₂ incubator (BINDER CB-50, Germany) up to the number of 6x10⁶. Ten thousand CRL-1888 cells were selected and put them into a φ 100mm cell-culturing Petri dish and then incubated at eleven different temperatures; i.e. 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 and 46 and for seven different incubation times; i.e. 24, 48, 72, 96, 120, 144 and 168hours. Every culturing test was repeated for three times. Microscopy assay was tested with optical microscope (CK40-F200, Olympus, Japan) at the x200 magnification. Cellular viability was tested using the Trypan blue exclusion method. The number of cells in 10µl were measured with a Hemocytometer(Marienfeld, Germany).

Results

The number of cells incubated at 37 for 24hous were 2.9×10^4 . This figure indicated that the cells were proliferated about 2.9 times more than the initial number of 1×10^4 at this condition. At the same temperature, the cells were proliferated about 66 times more than the initial one during 168 hours incubation. Figure 1 shows the increasing curves of the CRL-1888 cells at eleven different temperatures. The diagrams show that the proliferation curves of the CRL-1888 mouse tumor cell line are well in accord with the theoretical formula¹⁾ LogN = LogN₀ + kt. Where N is a measured number of cells, N₀ is the initially inoculated number of cells and k is the proliferation curves. The maximum value of the proliferation constant k was 0.021 at 20°C incubation text.

 $0.021 \mbox{ at } 39^{\circ}\mbox{C}$ incubation test. However, it was 0.011 for

normal incubation test temperature of 37° C. These results were well in accord with the results of the previous microscopic observation study.¹⁾ And the value of the proliferation constant k was conversed to negative value at the temperature above 42° C. Therefore, the

effectiveness of hyperthermia treatment for CRL-1888 could be expected at the temperature above 42°C.

Figure 1. Cell counts of the CRL-1888 after incubations at eleven different temperatures.

Figure 2. Graphs of the proliferation constant k of the CRL-1888 mouse tumor cell line at eleven different testing temperatures. The k value is conversed to negative above 42° C.

Conclusion:

In this proliferation study, we had found that the conversion temperature of the proliferation constant k of the CRL 1888 cell line is 42°C. This conversion temperature would be a very useful parameter for designing a thermo-seed size and heating characteristics for hyperthermia of the animal tumor model.

Acknowledgement

This work was supported by grant No. RTI06-12-01 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE)

References

1. Eun Mi Hwang and Young Kon Kim, "Proliferation characteristics of the CRL-1888 mouse tumor cell line for hyperthermia analysis with respect to culturing temperatures", Biomaterials Research Vol. 12 No. 1, 29-34, 2008