Functionalized Biodegradable Triclosan Macromers for Controlled Release Applications

Rao S Bezwada

Bezwada Biomedical, LLC.

Hillsborough, New Jersey, USA, 08844

Introduction: The anti-bacterial property of triclosan has led to its widespread use in a number of medical devices and consumer products applications. Besides being used in soaps, cleaning agent formulations, anti-microbial fabrics and other consumer articles, where it has been shown to be effective in reducing and controlling bacterial contamination on hands and treated articles, formulations containing triclosan have also been used in a number of medical devices including sutures incorporated for extended anti-microbial activity. Insipite of its widespread applications and beneficial anti-microbial properties, the limited solubility of triclosan and related compounds in water renders them non-hydrolyzable and reduces their circulation time and hence efficacy at the site of action. Moreover, it is very difficult to polymerize triclosan in its phenolic form. This prevents the beneficial attributes of triclosan and triclosan containing compounds from being used to their full potential.

In this paper, we present for the first time novel hydrolysable triclosan compounds and their macromers. These hydrolysable triclosan compounds and macromers were prepared by functionalization of triclosan with safe and biocompatible molecules such as glycolic acid, lactic acid, p-dioxanone, and/or caprolactone monomers. These monomers are the key components of majority of biodegradable medical devices. This functionalization enhances the native value of triclosan by providing the resultant compound with a specific, controlled degradation profile enabling controlled release of triclosan at the site of action over desired time period. These new functionalized triclosan compounds and macromers have more highly controllable hydrolysis profiles, increased solubility, improved bioavailability, improved efficacy and enhanced functionality.

Synthesis and characterization of functionalized triclosan compounds and macromers will be presented. *In Vitro* hydrolysis and controlled hydrolytic degradation profiles will be discussed during the presentation.

Results and Discussion:

Functionalization of Triclosan:

Triclosan molecule contains a phenolic hydroxyl group as shown in figure 1. In the present study, hydroxyl functional group in triclosan was functionalized with glycolic acid, lactic acid and caprolactone moiety as shown in figure 1 via Williamson etherification. This functionalization resulted in the formation of novel hydrolysable triclosan compounds. These compounds were then either covalently attached to the biodegradable polymer backbone or were condensed with diols to form dimers. In a similar fashion triclosan molecule was condensed with diacids via esterification to form hydrolysable compounds and dimers as shown in figure 2.

References: