Fibrochondrogenic differentiation of hMSCs on Nanofiber Scaffolds with and without Hydroxyapatite Nanoparticles

Kristen L. Moffat¹, Anne S.-P. Kwei¹, Stephen P. Doty¹, and Helen H. Lu¹.
Department of Biomedical Engineering, Columbia University, New York, NY, USA.
Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, NY, USA.

Statement of Purpose: Rotator cuff tendon tears represent one of the most common shoulder injuries, with 75,000 repairs performed annually in the U.S.[1]. The tendon inserts into bone through a fibrocartilaginous interface, with aligned non-calcified collagen fibers traversing the interface as well as calcified fibers penetrating into subchondral bone[3-5]. This multi-region interface is critical for minimizing stress concentrations and facilitating load transfer between tendon and bone. As full-thickness cuff tears often occur at the supraspinatus tendon-to-bone insertion[2], regeneration of this interface following surgical repair can promote long-term stability and restore the functionality of the rotator cuff. Our approach is to develop a biomimetic scaffold aimed at promoting the biological fixation of tendon to bone by facilitating the regeneration of the tendon-bone insertion. To this end, nanofiber-based poly(lactide-co-glycolide) (PLGA) scaffolds with and without a hydroxyapatite (HA) nanoparticle phase have been formed[6]. The objective of this study is to evaluate the fibrochondrogenic differentiation of human mesenchymal stem cells (hMSCs) on PLGA and PLGA-HA nanofiber scaffolds. It is hypothesized that hMSC response will be regulated by both mineral presence and biochemical stimulation.

Methods: Scaffold Fabrication and Characterization–Aligned nanofibrous scaffolds composed of PLGA (85:15, Lakeshore) & HA nanoparticles (100-150nm, Nanocerix) were produced via electrospinning[6,7]. PLGA nanofiber scaffolds with 0% and 5% HA (w/w) were formed. The scaffolds were examined by SEM (n=3) and mineral presence was confirmed with EDAX analysis (n=3). Tensile mechanical properties (n=5) were determined by the Sircol assay. PicoGreen assay. Glycosaminoglycan (GAG) deposition (n=5) was determined by the Live/Dead assay, and proliferation (n=5) by PicoGreen assay. Glycosaminoglycan (GAG) deposition (n=5) was determined by DMMB assay and collagen deposition (n=5) was determined by the Sircol assay.

Results: Scaffold Characterization–SEM revealed that the HA particles were well distributed and embedded within the PLGA nanofibers (Fig. 1A). Moreover, both Ca and P peak intensities increase with the addition of HA. While a decrease in yield strength was found with the addition of HA, no difference in elastic modulus was found between the 0 and 5% HA scaffolds (Fig. 1B).

Fibrochondrogenic Differentiation–The hMSCs aligned along the nanofiber long axis and remained viable on all substrates (Fig. 2A), with minimum proliferation found in the serum-free ITS media. Stimulation by TGF-β3 led to a significant increase in cell number at day 14 for the 5% HA group. The normalized GAG and collagen content were significantly greater for the 0% HA supplemented group compared to all other groups (Fig. 3A,B). Effects of Scaffold Mineral Phase–While no significant difference in biosynthesis was observed between the PLGA and PLGA-HA scaffolds, under TGF-β3 stimulation, the presence of HA nanoparticles inhibited proteoglycan and collagen production (Fig. 3, p<0.05). Discussion and Conclusions: The results of this study demonstrate that both types of nanofiber scaffolds (PLGA, PLGA-HA) support hMSC viability and biosynthesis. Under TGF-β3 stimulation, the cells expressed both collagen I and II, while producing a matrix rich in GAG and collagen on the PLGA scaffold. Incorporation of HA nanoparticles into the PLGA nanofibers modulates matrix production by these cells in the presence of TGF-β3. These findings demonstrate that TGF-β3 promotes fibrochondrogenic differentiation of hMSCs on the nanofiber scaffolds, and moreover, cell response is regulated by the HA nanoparticles. Future studies will focus on optimizing the PLGA and PLGA-HA composite scaffolds for promoting hMSC-mediated rotator cuff repair and integration with subchondral bone.