Hydrogels for Sustained Drug Release with Intraocular Lens Implantation for Cataract Surgery

Shai Garty^{1,2}, Rika Shirakawa^{1,3}, James D. Bryers², Bubby D. Ratner², Tueng. T. Shen^{1,2}.

- 1. Department of Ophthalmology, University of Washington, Seattle, WA, USA
- 2. Department of Bioengineering, University of Washington, Seattle, WA, USA
- 3. Department of Ophthalmology, University of Tokyo, Tokyo, Japan.

Statement of Purpose: Cataract is the leading cause of treatable blindness worldwide and the population afflicted by cataract is increasing globally [1]. Post-operative infection is a major concern resulting from suboptimal sterile operating conditions and scarce availability of postoperative medication, leading to bacterial growth and biofilm formation that blocks the vision pathway, causing repeated blindness [2]. We aim to develop a novel drug delivery system that allows sustained sufficient antibiotic level during the post-operative recovery period for cataract surgery. The development concludes a simple polymeric drug depot, releasing the antibiotic over the critical period post-implantation and up to four weeks. The proof of concept was made using both in-vitro and in-vivo experiment, performs adequate drug release profile and even overcoming bacteria challenged implants [3].

Poly(hydroxyethyl-methacrylate) Methods: (pHEMA) hydrogel was used as a drug depot, containing Norfloxacin antibiotics as a drug model [4]. The sustained drug-release was achieved using subsequent surface modification of the pHEMA. The hydroxyl groups were reacted with octadecylisocyanate, forming hydrophobic mono-layer coating. The surface coating was optimized to allow sustained release over a period of four weeks. The device was examined invitro for the detection of the antibiotic release patterns using spectrophotometry. The antibiotic function of the device was then further examined *in-vitro* using a silicone biofilm model. In-vivo feasibility was investigated using rabbits model. The control group of rabbits underwent standard cataract surgery with intraocular lens (IOL) implant and post-operative topical antibiotic and steroid. The experimental group received the polymeric device inserted on the standard three-piece IOL at the time of surgery and received only topical steroids post-operatively. In order to examine the antibiotic effectiveness in-vivo, the experimental group also challenged with was

Staphylococcus epidermidis bacteremia in concentration as high as 10^7 /ml in 30µl bolus. *In-vivo* antibiotics levels were sampled from the anterior chamber for up to 30 days and the infection was tracked visually and *ex-vivo*. Clinical outcomes of both groups were also evaluated.

Results and Discussion: Our *in-vitro* data demonstrate that the pattern of antibiotic release can be achieved by optimization of the surface coating. The *in-vivo* results demonstrated sustained sufficient antibiotic concentration (above the minimum inhibitory concentration (MIC) for most common bacteria related to endophthalmitis) for more than four weeks. Minimum toxicity was observed *in-vivo*. Both groups of animals recovered from surgery without evidence of infection.

Conclusions: The initial findings of the polymeric drug delivery device demonstrate the feasibility of delivering sufficient antibiotic in the anterior chamber for the critical post-operative period in a rabbit model. The device is simple to produce and may help alleviate the potential post-surgical infections.

References

- 1 Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. *Bull World Health Organ*. 2004; 82(11):844-51.
- 2 Adán A, Casaroli-Marano RP, Gris O, Navarro R, Bitrian E, Pelegrin L, Sanchez-Dalmau B. *Eye*, 2008;22(1):113-9.
- 3 Garty S, Shirakawa R, Bryers JD, Ratner BD, Shen TT. IOVS, *in preparation.*
- 4 Ricci V, Piddock LJ., *Antimicrob Agents Chemother.* 2000; 44(9):2361-6.