Enzyme-Responsive, Thiol-ene Hydrogels for Local Therapeutic Delivery at Sites of Inflammation

Alex A. Aimetti¹, Alexandra J. Machen¹, Kristi S. Anseth^{1,2}

¹Department of Chemical and Biological Engineering and the ²Howard Hughes Medical Institute

University of Colorado

UCB 424

Boulder, CO 80309-0424

Statement of Purpose: Responsive biomaterials that demonstrate both spatial and temporal control have potential application in a variety of biomedical applications. In particular. enzyme-responsive biomaterials can be designed to locally delivery therapeutics in recognition of a specific cellular response, such as inflammation. Within inflammatory microenvironments, activated neutrophils degranulate releasing a variety of enzymes including human neutrophil elastase (HNE). As such, we sought to utilize this inflammatory-based response as a way to trigger local delivery of biologically relevant therapeutics from poly(ethylene glycol) (PEG)-based hydrogels. Thiol-ene photochemistry¹ was utilized as a facile method to fabricate PEG hydrogels with enzyme sensitive peptide cross-links rendering the material degradable upon exposure to HNE. In addition, the tunable-release of physically-entrapped therapeutics is directly related to the rate of gel erosion.

Methods: Four-arm PEG tetra-norbornene, bis-cysteine HNE-cleavable peptide², and photoinitiator were combined in a monomer solution. Upon exposure to UV light, thivl radicals form that subsequently add to the norbornene functionality in a stepwise fashion ultimately resulting in a three-dimensional, cross-linked network. HNE-dictated cleavage occurs between the P1 and P1' amino acid positions (Figure 1). PEG molecular weights and 20,000) $(M_n = 5,000)$ and peptide linkers (CGAAPV¹RGGGGC CGAAP(Nva)↓GGGGGGC) & were varied to study their influence on degradation kinetics. To characterize erosion, HNE was exogenously added at physiological concentrations (2uM-200nM) and the hydrogel fractional mass loss was determined. Bovine serum albumin (BSA) was encapsulated as a model therapeutic within the hydrogel and its release monitored in response to HNE treatment.

Figure 1. Thiol-ene photopolymerization scheme

Results: Hydrogel degradation kinetics proved to be dependent on PEG molecular weight, peptide cross-link, and concentration of HNE. At increased enzyme reaction rates, gel degradation is surface mediated. However, as the rate of reaction decreases (i.e. decreased [HNE]), the mass loss profile begins to deviate from a surface eroding system (Figure 2A). In addition, previous work in the lab has shown the peptides AAPV¹RGCG and AAP(Nva)↓GGCG exhibit HNE cleavable rate constants (k_{cat}) of 3.13 s⁻¹ and 0.56 s⁻¹, respectively. By incorporating the peptide cross-link with the norvaline (Nva) residue, we observed a decrease in gel degradation rates. Therapeutic delivery profiles were in agreement with the mass loss profiles under the same external conditions and gel compositions (Figure 2B).

Time (hr) Figure 2. Influence of [HNE] on A. hydrogel mass loss and B. BSA release from gel

Conclusions: This work aims at developing a novel, environmentally-responsive drug delivery hydrogel capable of releasing a therapeutic at specific sites of inflammat ion. Thiol-ene photopolymerization is used as an easy way to incorporate synthetic peptide cross-links into the network. By engineering different synthetic crosslinks and gel formulations, a tailorable therapeutic release profile was achieved that can be exploited for localized delivery *in vivo*.

Acknowledgements: NIH-1RO1DK076084, GAANN fellowship to AAA, and NSF-REU fellowship to AJM. **References:**

1.Carioscia, JA. J. Polym. Sci., Part A: Polym. Chem. 2007;45:5686-5696. 2. Nakajima, K. J. Biol. Chem. 1979; 254: 4027-4032.