Fibroblasts Regulate Monocyte Response to ECM-derived Matrix: The Effects on Monocyte Adhesion and the Production of Inflammatory, Matrix Remodeling and Growth Factor Proteins

Amy Chung1, and W. John Kao, Ph.D.1,2
1University of Wisconsin-Madison, School of Pharmacy, Madison, Wisconsin USA
2University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin USA

Statement of Purpose: Characterization of inflammatory, remodeling and critical wound healing factors provides insight into the dynamic host response to biomaterials. A monocyte/fibroblast co-culture in the presence of a semi-interpenetrating network (sIPN) composed of PEGylated RGD-modified gelatin and PEGdiacylate (PEGdA) was constructed as shown in Figure 1. Fibroblast perturbation upon monocyte interactions with the extracellular matrix (ECM)-derived scaffold was evaluated. We hypothesized that fibroblast decrease monocyte adhesion by either affecting monocyte viability or by downregulating key focal adhesion proteins such as vinculin in monocytes. Preliminary data revealed a drastic increase in granulocyte-macrophage colony-stimulating factor (GM-CSF) and matrix metalloproteinase-2 (MMP-2) only in co-culture and not in monoculture and thus we investigated the factors involved in inducing the drastic upregulation of these proteins in co-culture. We hypothesized that GM-CSF induces an upregulation of GM-CSF and MMP-2 in a monoculture and fibroblast co-culture in the presence of the ECM-derived sIPN.

Methods: PEGylated-ligand modified gelatin was synthesized by an established procedure. HPLC, MS, 3H-NMR, GPC and trinitrobenzensulfonic acid method were used for characterization. The ligand-PEG grafted on the gelatin backbone were GGG-, RGD-, and PHSRN-PEG. sIPNs were made by photo-crosslinking the ligand-PEG grafted gelatin with PEGdA. Density of peptide-PEG grafted was analyzed on RGD-PEG grafted sIPN was hindered by the presence of fibroblasts, shown in Table 1 below.

Protein expression: The ECM-derived sIPNs led to increased monocyte expression of inflammatory proteins IL-1β and TNF-α initially but levels decreased over time. The sIPN also led to increased monocyte MMP-9, VEGF and GM-CSF expression over time. Fibroblasts drastically increased monocyte GM-CSF except on RGD and PHSRN grafted sIPNs at 96 h (Figure 2). Monocytes also led to drastically increased fibroblast GM-CSF and MMP-2 at later time points.

Characterization of nonadherent monocyte viability and monocyte vinculin regulation to investigate monocytes’ active versus passive detachment from the sIPN are currently in progress. rhGM-CSF induction of monocyte and fibroblast GM-CSF and MMP-2 is also in progress.

Conclusions: RGD-PEG grafted sIPNs enhanced monocyte adhesion but the presence of fibroblasts inhibited this effect. In both mono and co-culture, MMP-9, VEGF and GM-CSF were increased over time due to the presence of the ECM-derived sIPN. Drastically increased GM-CSF and MMP-2 were observed under co-culture but not monocultures.


Acknowledgements: NIH Grant R01 HL077825 and R01 EB006613, NSF Predoctoral Fellowship 2006043753