Integrin-Directed Modulation of Macrophage Response to Biomaterials

Toral Zaveri1, Natalia Dolgova1, Michael Clare-Salzler2, Benjamin G. Keselowsky1

1. J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL 32611 U.S
2. Dept. of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville FL 32611 U.S

Background: Macrophages recruited to the site of biomaterial implantation are the primary mediators of the chronic foreign body response to implanted materials. Since foreign body response limits performance and functional life of numerous implanted biomaterials/medical devices, various approaches have been investigated to modulate macrophage interactions with biomaterial surfaces to mitigate this response. The integrin family of cell surface receptors mediates cell adhesion to biomaterials through adhesive proteins spontaneously adsorbed on biomaterial surfaces. We have investigated the role of integrin Mac-1 in macrophage inflammatory processes such as phagocytosis and inflammatory cytokine secretion in response to particulate biomaterials. Mac-1 binding to adsorbed proteins has shown to mediate phagocyte recruitment and adhesion to implanted material. We have also investigated the in vivo foreign body response to subcutaneously implanted biomaterials in Mac-1 KO mice compared to WT control. We are also investigating the role of other integrins such as αβ3 in macrophage phagocytosis by blocking with RGD peptide which is the binding motif present in different proteins for integrin binding. By studying the phagocytosis, inflammatory and foreign body response of macrophages in integrin knockout mice, we aim to identify the role of various integrins such as Mac-1 in macrophage adhesion to and phagocytosis of biomaterials.

Methods: Macrophages matured from bone marrow harvested from C57BL/6J mice and Mac-1 KO mice were used to study macrophage phagocytosis and inflammatory response. Polystyrene microparticles (MPs) coated with proteins such as fibronectin (FN), fibrinogen (Fg), Vitronectin (VN), bovine serum albumin (BSA) and Serum were used to study macrophage phagocytosis and inflammatory response to biomaterials and MPs. Once their role in inflammatory response to biomaterials is established, integrin blocking therapies can be developed to mitigate the macrophage inflammatory response and thus improve functional life of biomaterials.

Results and Discussion: We quantified macrophage phagocytosis of protein coated PS MPs. Mac-1 KO macrophages phagocytosed 40% fewer MPs compared to WT (Fig 1 A, B & C) when coated with proteins Fg and FN, known ligands for Mac-1. Due to the differences in the number of phagocytosed MPs, we infer that Mac-1 is able to mediate macrophage phagocytosis of PS MPs. The thickness of fibrous capsule formed around the implanted discs was lower in Mac-1 KO mice as compared to WT indicating a role of Mac-1 in fibrous capsule formation and the foreign body response to bulk biomaterials. (Figure 2A) The thickness of fibrous capsule formed around the discs coated with Echistatin loaded ELVAX was lower as compared to ELVAX controls indicating a role of RGD-binding integrins such as αβ3 in fibrous capsule formation. (Figure 2B) These results indicate that integrins Mac-1 and RGD-binding integrins such as αβ3 can play a role in macrophage adhesion, phagocytosis and inflammatory response to biomaterials and MPs. Once their role in inflammatory response to biomaterials is established, integrin blocking therapies can be developed to mitigate the macrophage inflammatory response and thus improve functional life of biomaterials.