Efficient In-Vivo Tumor Targeting of Chitosan-Conjugated, Pluronic-Based Nano-Carriers

Won Il Choia, Ja-Young Kima, Seung-Young Leeb, Kwangmeyung Kimb, Ick Chan Kwonb, Young Ha Kima, Giyoong Taea,*

aDepartment of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.
bBiomedical Research Center, Korea Institute of Science and Technology, Seoul, Korea.

Statement of Purpose: Various nanoparticle systems with a long blood circulation time and a high tumor accumulation have been reported for cancer diagnosis and treatment based on their EPR (enhanced permeability and retention) effect [1,2]. Here, we prepared several Pluronic-based nano-carriers attached with an NIR dye, and characterized their cellular uptake and in-vivo tumor targeting efficiency focused on the effect of chitosan and the structure of Pluronic.

Methods: Using two kinds of Pluronic (F127 and F68), Pluronic-based nano-carriers were made by a photo-crosslinking of a diluted, diacryated Pluronic aqueous solution, as previously reported by us [3]. For imaging, nano-carriers were chemically labeled with Cy5.5 molecules as a near-infrared (NIR) fluorophore. Physicochemical properties (size, surface charge, and in-vitro stability in serum) of the nano-carriers as well as the thermo-sensitive size variations were measured. In-vitro cellular uptake and in-vivo tumor accumulation of Pluronic-based nano-carriers were characterized using squamous cell carcinoma (SCC7) cells and SCC7 tumor-bearing mice, respectively.

Results: Under the appropriate photo-polymerization conditions, relatively mono-dispersed nano-carriers (chitosan-conjugate and bare Pluronic-based) were successfully obtained. Surface functionalization of the Pluronic-based nano-carriers did not change their size or thermo-sensitive response, but surface charges of the nano-carriers were changed by chitosan-conjugation. All of these nano-carriers did not show any aggregation in serum-containing media and acute cytotoxicity to both normal (fibroblast) and tumor cells. The relative cellular uptake of chitosan-conjugated nano-carriers was much higher than that of bare nano-carriers (Figure 1). This enhanced cellular uptake was strongly correlated with in-vivo tumor accumulation. As shown in Figure 2, the time-dependent excretion profile and tumor accumulation of the nano-carriers were clearly visualized by monitoring real-time NIR fluorescence intensity. In the case of the bare Pluronic-based nano-carriers (NC(F68) and NC(F127)), the fluorescence intensities in tumor region were rapidly decreased within 16 h post-injection. However, the high fluorescence intensities of chitosan-conjugated nano-carriers (Chito-NC(F68) and Chito-NC(F127)) and the tumor site were maintained well up to 72 h. Tissue distribution (liver, lung, kidney, spleen, and heart) and tumor accumulation, analyzed from the ex-vivo NIR fluorescence images at 72 h post-injection also showed higher fluorescence intensities at tumor site from chitosan-conjugated nano-carriers compared to bare nano-carriers, implying prolonged blood circulation and more effective tumor accumulation of chitosan-conjugated nano-carriers. Between F68 and F127, F68-based, chitosan-conjugated nano-carriers remained longer at the tumor site until 72 h, whereas the signal from F127 based ones were decreased in 24 h.

Conclusions: All kinds of Pluronic-based nano-carriers showed the in-vitro serum stability and no acute cytotoxicity. The in-vitro cellular uptake and the in-vivo tumor accumulation of chitosan-conjugated nano-carriers were very efficient and were significantly enhanced than bare Pluronic-based nano-carriers.

Acknowledgement: This research was partially supported by NRF NCRC grant, MEST, Korea (R15-2008-006-02002-0).

References: