Preparation and Characterization of Nanocomplexes Based on Lithocholic acid-Modified Exendin-4 and Glycol Chitosan Bearing β-Cyclodextrin.

<u>Hye Jin Jang¹</u>, Sohee Son², Su Young Chae³, Kang Choon Lee², Jae Hyung Park^{1,4,*}.

¹⁾Department of Chemical Engineering, Kyung Hee University, Yongin, Gyeonggi-do 449-701, Korea, ²⁾ School of Pharmacy, SungKyunKwan University, Suwon, Gyeonggi-do 440-746, Korea, ³⁾ Samsung Advanced Institute of Technology, Gyeonggi-do 446-712, Korea, ⁴⁾ Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea

Purpose

Exendin-4, a naturally occurring dipeptidyl peptidase-IV resistant GLP-1 analog, has emerged as a promising therapeutics for type 2 diabetics. However, the therapeutic efficacy of exendin-4 is hampered by its short biological half-life, thus requiring twice a day injections in the clinical settings. Although several methods, including PEGylation, have been developed to overcome this critical issue, the long-acting formulation of exendin-4 still remains an intriguing challenge. In recent years, supramolecular systems have gained significant attention for delivery of biotherapeutics. For example, lithocholic acid-modified exendin-4 (LAM₁-Ex4) remarkably increased duration of action, presumably due to the nanoparticlar formation and interactions with albumin. Based on the strong binding of lithocholic acid with β cyclodextrin(β -CD), we envisaged that design of supramolecular nanoparticular systems based on β-CD could further prolong the duration of action. To realize our concept, in the present study we have synthesized glycol chitosan bearing β -CD(β -CDGC) conjugate and investigated their complexation behavior with LAM₁-Ex4.

Methods

 β -CD bearing glycol chitosan(β -CDGC) was prepared by the reaction with mono functionalized cyclodextrin and LAM₁-Ex4 (Lys²⁷-LA-Ex4) were obtained by reverse-phase HPLC separation. LAM₁ was physically encapsulated into β -CDGC nanoparticles by dialysis The physicochemical characteristics of the method. LAM₁-Ex4 loaded β-CDGC conjugate(LAM₁/β-CDGC) were examined by using transmission electron microscope (TEM), dynamic light scattering (DLS). The stability of LAM₁-Ex4 and LAM1/β-CDGC was studied in the presence of Trypsin at 37°C. Further, db/db mice were administered a single subcutaneous(S.C.) injection of LAM₁/β-CDGC nanocomplexes and blood glucose levels were monitored using a glucometer and tail-tip blood samples ..

Results

The size of the LAM₁-GC, LAM₁/ α CDGC and LAM₁/ β -CDGC nanocomplexes was found to be 655, 461 and 325 nm, respectively. This indicates that particle size of LAM₁/ β -CDGC nanocomplexes can decreases by strong interaction between lithocholic acid and β -Cyclodextrin. The half-life of LAM₁/ β -CDGC was increases 20% to 7.35min compared with LAM₁-Ex4.

Figure 1. The stability of Exendin-4, LAM₁-Ex-4 and LAM₁/ β -CDGC in presence of trypsin at 37°C.

Futher, the results obtained from phamacodynamics study indicated that the glucose lowering effect of LAM₁/ β -CDGC nanocomplexes continued for a week *in vivo*. Calculated glucose AUC value also revealed that LAM₁/ β -CDGC had greater antidiabetic effects than exendin-4.

Figure 2. Pharmacodynamics characterizations of Exendin-4, LAM₁-Ex4 and LAM₁/ β -CDGC after an S.C. injection (100nmol/kg, n=6).

Conclusions

We prepared nanocomplex system based on lithocholic acid-modified exendin-4 and glycol chitosan bearing β -cyclodextrin. This nanocomplex system might have a potential as long-acting therapeutics for type 2 diabetics.

References:

- 1) J Controlled Release 142 (2010) 206-213
- 2) J. Med. Chem. 2009, 52, 6889-6896
- 3) Biomaterials 31 (2010) 4121-4128
- 4) Tetrahedron Letter, Vol. 38, pp. 6171-6172, 1997