Collection of prostaglandin E2 and leukotriene B4 from implanted microdialysis probes

<u>Alda Diaz-Perez^{1,2}</u>, Geetika Bajpai^{1,2}, Julie A. Stenken^{1,2}

¹Cell and Molecular Biology Program, ²Dept. of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701

Statement of Purpose:

Wound healing is a complex process involving an inflammatory phase followed by a remodeling phase. Macrophages are major cellular players in this process. They play both pro-inflammatory as well as antiinflammatory roles depending on the cues provided by the microenvironment. Macrophages have genomic plasticity allowing these cells to exist in different phenotypic or "polarized" states. The M1 phenotype, or classically active phenotype, is present in response to LPS and/or IFN-y. The M2 phenotype or alternatively activated phenotype, is produced in response to IL-4, IL-10, IL-13, TGF- β or glucocorticoids.¹ In addition to cytokines, macrophages produce arachidonic acid-derived signaling molecules including prostaglandins and leukotrienes. This research aims to understand how these lipid molecules differ between M1 and M2 polarized states to better understand the lipid chemistry of wound healing biology. Prostaglandin E_2 (PGE₂) and leukotriene B_4 (LTB₄) have been chosen as representations of the eicosanoids, and they are commonly used in different type of analysis. In this work, preliminary data illustrating the collected amount of LTB₄ and PGE₂ are presented.

Methods:

In vitro recovery experiments were performed with CMA 20 PES 100 (MWCO) microdialysis probes using a flow rate of 1 μ L/min. The perfusion fluid consisted of Ringer's solution (150mM NaCl, 4mM KCl, 2.4mM CaCl₂) supplemented with 6% dextran and 0.1% BSA to prevent ultrafiltration. The concentrations of PGE₂ and LTB₄ external to the probe were respectively 1000 pg/mL and 500 pg/mL. The sample collections were taken each hour post-implantation, as denoted in the tables. Samples were analyzed the same day of the collection with ELISA (Cayman Chemical). The plates were read at a wavelength between 405-420 nm.

In vivo experiments were performed with male Sprague-Dawley rats (250-300 g) with dialysis probes implanted into the dorsal subcutaneous tissue. On day 1 and day 4 post-implantation, dialysate samples were obtained, stored on ice, and quantified the same day. Pooled wound fluid, from the subcutaneous pocket where the probe inlet and outlet lines were sealed in, was collected from each animal. These samples were stored at -20°C until analysis (3 days maximum).

Results:

PGE₂ had a concentration of 1000 pg/mL, and the average recovery of PGE₂ was 344 ± 85 SD pg/mL (N=4), which gives a 34.4% extraction efficiency. The LTB₄ average recovery was 240 ±18 SD pg/mL (N=5), which gives a 48% extraction efficiency.

Table 1. Microdialysis concentration for the PGE₂

PGE 2 (pg/mL)	Rat 1 Day 4	Rat 2 Day 4	Rat 3 Day 4
~6 th Hr			25.4
7 th Hr	26.4	8.9	17.7
8 th Hr	14.3	30.3	
9 th Hr	12.0		
10 th Hr	15.2		

Table 2. Microdialysis concentration for the LTB₄

LTB ₄ (pg/mL)	Rat 1 Day 4	Rat 2 Day 4	Rat 3 Day 1	Rat 4 Day 4	Rat 5 Day 4
~6 th Hr			N.D. †	4.8 (duplicate N.D. †)	6.5
7 th Hr	N.D. †	3.9	N.D. †	N.D. †	N.D. †
8 th Hr	14.3	3.6			
9 th Hr	N.D. †				
10 th Hr	N.D. †				

Table 3. PGE₂ and LTB₄ concentration in wound fluid

PGE ₂ (N=3) (pg/mL)	LTB ₄ (N=3) (pg/mL)
26.7 ±15.2 S.D.	N.D. †
13.5 ±3.5 S.D.	6.1 ±0.6 SD

[†] N.D. Not Detected; S.D. Standard Deviation

Conclusions:

This preliminary study was based on the concentration of prostaglandin E_2 and leukotriene B_4 in two different biological samples: wound fluid and dialysates.

References:

1. Martinez, F. O., *et al.* (2008) Macrophage activation and polarization. *Front. Biosci.*, *13*, 453-461.