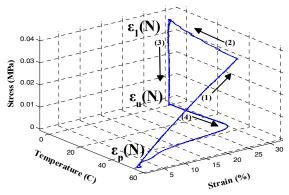
Development of a Shape Memory Patch for Minimally Invasive Repair of Vascular Rupture

Boire TC, Gupta MK, Dubetz DA, Sung HJ.

Vanderbilt University Department of Biomedical Engineering


Statement of Purpose: It is challenging and surgically risky to treat vascular injuries such as strokes and aneurysms, especially ruptures of small diameter blood vessels. through currently available therapeutic approaches. To address these issues, a vascular patch made of biodegradable shape memory polymers (SMPs) can be deployed to the injured or ruptured site in a minimally invasive manner via a laparoscope. SMPs are capable of achieving minimally invasive implantation and repair vascular injuries because they can be *fixed* into a temporary shape (i.e. an injectable shape for placement through a laparoscope) and recover their original, permanent shape (i.e. a ruptured tissue-specific shape) when triggered by an external stimulus such as heating above its melting temperature (T_m) . Poly(ε -caprolactone) (PCL) is a biocompatible, biodegradable polymer that can be modified to form a chemically cross-linked polymer film with excellent shape memory properties¹. However, its T_m (45-60°C) is too high for physiological applications. In this study, the T_m was tuned near body temperature (37°C) by copolymerizing ε-caprolactone (CL) with α -allyl carboxylate- ϵ -caprolactone (ACCL). When polymerized, the pendant double bonds from the allyls enable formation of chemical cross-links that are essential for fixing and recovery of shape. UV crosslinking of x%PCL-y%ACPCL (x and y: molar ratio) produced polymer films with tunable shape memory properties, suggesting these novel SMPs offer promise in treating vascular injuries in a minimally-invasive way.

Methods: ACCL was first synthesized by adopting the method for α -benzyl carboxylate- ϵ -caprolactone². A series of x%PCL-v%ACPCL copolymers (y = 6, 11, and 15%) were synthesized by ring-opening polymerization of ACCL and CL. Polymers and 2,2-dimethoxy-2phenylaceto-phenone were solubilized in dichloromethane and irradiated with a 260 nm UV collimated beam. Differential scanning calorimetry was performed to determine thermal properties³. Shape memory properties of cross-linked films were characterized on a TA Instruments Q800 dynamic mechanical analyzer (DMA). Rectangular strips (~20mm x ~3.0mm x ~0.3mm) were loaded onto a tension clamp and subjected to three of the following thermomechanical cycles. Equilibrated at T_m +~15°C, films were subjected to tensile stress (0.004 MPa/min to 0.039 MPa) as shown in (1) of Figure 1. Films were then cooled (10°C/min to 0°C) (2), yielding the strain at the maximum stress $\varepsilon_1(N)$, before unloading the stress (0.004 MPa/min to 0 MPa) (3) and recording strain as $\varepsilon_u(N)$, the temporary shape. Finally, the films were heated (2°C/min to $T_m+\sim 15^{\circ}C$) (4) to recover the permanent shape $\varepsilon_p(N)$. The shape memory effect was quantified by shape fixity (R_f) and shape recovery (R_r) . Shape fixity defines the ability to maintain a programmed shape induced by mechanical deformation, while shape recovery describes how well $\varepsilon_n(N)$ is recovered from the beginning of the Nth cycle ($\varepsilon_p(N-1)$):

$$R_{f}(N) = \frac{s_{u}(N)}{s_{u}(N)}, R_{v}(N) = \frac{s_{u}(N) - s_{u}(N)}{s_{u}(N) - s_{u}(N-4)},$$

Results: To successfully repair vascular tissue, SMPs should demonstrate a $T_m = \sim 37^{\circ}$ C with R_f and $R_r = \sim 100\%$ after mechanical deformation into an injectable shape. T_m 's of 44.6, 38.0, and 29.7°C for y = 6, 11, and 15% copolymer films, respectively, suggest that shape recovery can be achieved in the body for y = 11 and 15% without the need for additional heating that could damage tissue and cause inconsistencies in shape recovery. All polymers demonstrated $R_f > 99\%$ after large (>30%) strains, indicating that the films can be programmed and fixed into a shape such as a long thread that can fit through a laparascope. Furthermore, $R_r > 99\%$ was accomplished after repeated cycling, implying that a ruptured tissue-specific shape can be fully recovered if heated beyond the $T_m \sim 37$ °C.

Thermomechanical Cycling of PCL89-ACPCL11

Figure 2. Initially at 0 MPa and 55°C, y = 11% was subjected to 0.004 MPa/min to 0.039 MPa (1), cooled (2), unloaded of tensile stress (3), and heated to recover shape (4). The cycle was repeated three times.

Conclusions: A new class of SMPs, PCL-ACPCL, was synthesized and characterized in order to develop a minimally invasive vascular patch for injuries of small diameter blood vessels to which proximal access is difficult (e.g., strokes). T_m 's near $37^{\circ}\overline{C}$ were achieved for 89%PCL-11%ACPCL 85%PCL-15%ACPCL, and indicating that shape recovery is possible for these polymers without implementing any risky heating procedures. Stress-controlled thermomechanical cycling demonstrated that these SMPs have an excellent ability to be programmed into an injectable shape for minimally invasive deployment to the site of injury as Rf was >99% for all films. R_r was also >99% after repeated cycling, suggesting these polymers can potentially assume a ruptured tissue-specific shape after implantation. PCL-ACPCL films will be tested in an *in vitro* vascular injury model.

References:

- [1] Neuss S. Biomaterials 2009;30:1697-1705.
- [2] Mahmud A. Macromolecules 2006;39:9419-9428.
- [3] Guo B. Biomacromolecules 2011;12:1312-1321.