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Statement of Purpose: Hyaluronic acid (HA) is a 
naturally occurring glycosaminoglycan that plays a 
critical role in many cellular pathways. Synthetically 
sulfated HA has been shown to bind heparin-binding 
proteins (HBP) with high affinity [1]. We have recently 
covalently modified and crosslinked sulfated HA into 
hydrogels for tunable release of HBPs [2]. 
Electrospinning has recently gained much interest due to 
its ability to mimic the nanofibrous nature of the 
extracellular matrix [3]. The resulting fibrous scaffolds 
have a high porosity and surface area to volume ratio; 
these properties may allow for increased cellular 
infiltration, which is especially important for many 
acellular therapies, in comparison to non-fibrous, uniform 
hydrogels. Here, we focus on electrospinning sulfated HA 
into hydrolytically degradable, fibrous hydrogels for 
controlled release of stromal cell-derived factor-1 alpha 
(SDF-1), a potent chemoattractive cytokine involved in 
regulating progenitor cell trafficking. 
Methods: Hydroxyethyl methacrylate-modified HA 
(HeMA-HA) and sulfated HeMA-HA (HeMA-SHA) 
macromers were synthesized as described in [2]. Briefly, 
HeMA succinate (HEMA-COOH) was coupled to a 
tetrabutylammonium (TBA) salt of HA in the presence of 
4-dimethylaminopyridine and di-tert-butyl dicarbonate to 
form HeMA-HA. For HeMA-SHA synthesis, a TBA salt 
of HeMA-HA was dissolved in DMF (0.25 w/v%) and 
reacted with a SO3/DMF complex (20:1 molar ratio). 
HeMA-HA and HeMA-SHA macromers were 
characterized through 1H NMR, gel permeation 
chromatography, a modified dimethylmethylene blue 
(DMMB) assay (for sulfate content) [4], and zeta 
potential measurements. Blends of HeMA-HA and 
HeMA-SHA (100/0 HeMA-HA/HeMA-SHA and 90/10 
HeMA-HA/HeMA-SHA) were dissolved at a final 
combined concentration of 4 w/v% with 2 w/v% 
polyethyleneoxide in 0.05% w/v I2959 in deI H2O and 
electrospun with a voltage of 22 kV, a distance of 15 cm, 
and a flow rate of 1.4 mL/hr. The fibrous samples were 
then crosslinked under UV light and imaged while dry 
(SEM) and swollen (confocal microscopy). For confocal 
imaging, a methacrylated rhodamine dye (MeRho) was 
included prior to electrospinning. For SDF-1 release 
studies, SDF-1 was added to each polymer blend at a 
concentration of 1.67 µg/mL prior to electrospinning. 
Samples were cut from the mats (1.5x1.5cm) and 
incubated in 1 w/v% BSA at 37°C, and released SDF-1 
was quantified using an ELISA (R&D Systems). 
Results: Both HeMA-HA and HeMA-SHA macromers 
had a % HeMA modification of 15% and a number 
average molecular weight (Mn) of 80 kDa. Using the 
DMMB assay, a significant increase in sulfate content 
was observed with HeMA-SHA compared to HeMA-HA. 
Further, the sulfate content of HeMA-SHA was 
comparable to that of heparin (Figure 1A). The addition 
of sulfate groups enhanced the negative charge of HeMA-

SHA macromers compared to HeMA-HA macromers, as 
observed with zeta potential measurements (data not 
shown). Electrospinning both HeMA-HA/HeMA-SHA 
blends resulted in fiber diameters of ~200 nm dry and 
~700 nm swollen, with no significant differences between 
the two blends. When incubated with DMMB dye, fibrous 
samples with HeMA-SHA stained purple whereas 
samples without HeMA-SHA remained blue, indicating a 
significant difference in sulfate content (Figure 1D). To 
demonstrate controlled release, SDF-1 was encapsulated 
as a model HBP in HeMA-HA/HeMA-SHA blend fibrous 
scaffolds.  SDF-1 release was significantly slowed in the 
90/10 HeMA-HA/HeMA-SHA group (Figure 1C). 
Conclusions: This work demonstrates the ability to 
specifically control release of HBPs within a chemically 
versatile, HA-based fibrous scaffold. Ongoing work 
includes tuning the release profiles of SDF-1 along with 
other factors using multi-polymer systems, and 
investigating the synergistic effects of these growth 
factors on MSC migration and phenotype in vitro.  
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Figure 1. (A) Chemical structures of HeMA-HA and HeMA-SHA, (B) 
Sulfate content of HeMA-SHA and HeMA-HA macromers and heparin 
using a modified DMMB assay, (C) Release of encapsulated SDF-1 
from electrospun HeMA-HA/HeMA-SHA blends, (D) Left column: 
SEM images of dry fibers (scale bar = 2 µm), Middle column: confocal 
images of swollen fibers with MeRho (scale bar = 10 µm), Right 
column: fibrous scaffolds stained with DMMB dye (scale bar = 1 cm).  
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