
Machine Learning Analysis for Identification of Cell Shape Metrics Associated with  

Stem Cell Differentiation in Nanofiber Scaffolds  

Desu Chen
1
, Sumona Sarkar

2
, Julian Candia

1
, Stephen J. Florczyk

2
, Subhadip Bodhak

2
, Meghan K. Driscoll

1
, 

 Carl G. Simon, Jr.
2
, Joy P. Dunkers

2
, Wolfgang Losert

1
 

1
University of Maryland, College Park, MD; 

2
Biosystems & Biomaterials Division, National Institute of Standards & Technology, 

Gaithersburg, MD 

Statement of Purpose:  Cell shape has been 

demonstrated to be closely related to cell function and 

may be an important predictor of cell fate.  Many metrics 

are available to describe cell shape, however the 

relationship of these metrics to cell fate are not well 

understood.  Specifically, nanofiber scaffold structures 

have been demonstrated to uniquely induce osteogenic 

differentiation of human bone marrow stromal cells 

(hBMSCs) and alter cell shape, similarly to chemically 

induced differentiation [1].  This phenomenon occurs 

after only 1 day of culture, and may allow for early 

prediction of stem cell fate.  In this study, we aim to 

classify cells on nanofiber scaffolds versus flat film 

substrates based on their shape metrics and correlate these 

metrics to functional outcomes of the cells. We have 

developed computational tools based on Support Vector 

Machines (SVMs) to identify cell morphological features 

associated with nanofiber induced differentiation of 

hBMSCs.  To accurately classify cells based on shape and 

to determine the most significant cell shape metrics we 

have utilized the supercell method which accounts for cell 

shape heterogeneity, as well as a jackknife method to test 

the robustness of our classifications [2]. 

Methods: Poly(-caprolactone) (PCL) films (SC) were 

generated with spin-coating and PCL nanofiber scaffolds 

(NF) were fabricated by electrospinning onto tissue 

culture polystyrene discs. hBMSCs were seeded and 

cultured on the PCL films and PCL nanofiber scaffolds 

for 24 hours (37° C, 5% CO2), fixed with 3.7% 

formaldehyde and permeabilized with 0.1% Triton-X, 

then stained with Alexa Fluor 546 phalloidin (0.33M) 

for actin and 4',6-diamidino-2-phenylindole (DAPI, 

0.03mM) for nucleus. High-resolution 3-D z-stack images 

of hBMSCs were taken with a confocal microscope 

(Leica SP5) with 63x water immersion objective. A total 

of 121 hBMSCs in NF and 114 hBMSCs on SC were 

imaged. Max projections of the z stacks were processed 

with snake algorithm to define cell outlines with sub-pixel 

resolution in MATLAB [3] (Fig. 1 top). Shape metrics 

were extracted from these outlines for each hBMSC. A 

Support Vector Machine tool, perceptron, associated with 

the supercell paradigm was then implemented to classify 

hBMSCs in different culturing conditions [2]. Supercells 

were generated by averaging the shape metrics over a 

certain number of randomly picked original cells to 

reduce single cell heterogeneity in cell shape. All possible 

combinations of uncorrelated metrics (correlation 

coefficient < 0.5) were considered to identify the optimal 

combination of metrics and proper supercell size. 

Results: 14 metrics were extracted from shape analysis as 

candidate shape indicators including 6 metrics showing 

significant difference (p-value < 0.001) in the comparison 

of NF versus SC. After applying perceptron analysis to 

data of varied sizes of supercell to all possible 

combinations of the uncorrelated featured metrics, we 

tested our results with a jackknife method. We found that 

with the combination of the following 3 metrics 

(“circularity, minor axis length and boundary tortuosity” 

or “solidity, minor axis length and boundary tortuosity”), 

we achieved the optimal classification of hBMSCs on NF 

and SC. Averaging over every 5 cells randomly (i.e. 

supercell size = 5) yields 99% correctness and 95% 

robustness in the jackknife test (Fig. 1 bottom). The 

analysis also yields the ranking of metrics by importance 

[2]. We found the following rankings of ability to 

properly classify the cells: “circularity > minor axis 

length > boundary tortuosity” or “minor axis length > 

solidity > boundary tortuosity” respectively. 

            
 

        
Figure. 1 (Top) Maximum intensity projections of the image z-stacks 

for hBMSCs on NF (left) and SC (right) with snake outlines in green 

(nucleus = blue; actin = red). (Bottom left) Correctness of classification 
with several shape metric combinations. (Bottom right) Results of 

jackknife test for the robustness of classification 

Conclusions: The robust classification achieved with the 

supercell/SVM method successfully confirms and 

quantifies the morphological difference of hBMSCs on 

NF and SC on day 1 based on shape metrics. The 

resulting optimal linear classifiers will also enable 

predictions of future data. Several 2-D cellular 

morphological properties were included in the optimal 

classifier and emerged as important shape indicators for 

this difference. These shape indicators may be related to 

not only mechanical response of cells to the geometry of 

nanofiber environment but also cellular behavior of 

osteogenic differentiation at early stage. This approach is 

easily extendable to image stacks and 3D shape metrics.  
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