Graft Vascularization for Skeletal Muscle Regeneration
Beth E. Pollot1,2; Jennifer McDaniel1; Joseph C. Wenke1; Teja Guda1,2; Christopher R. Rathbone2
1The University of Texas at San Antonio, San Antonio, TX; 2US Army Institute of Surgical Research, Ft. Sam Houston, TX

STATEMENT OF PURPOSE:
A key component of tissue engineered constructs is the presence of a vasculature capable of sustaining cell viability1. Scaffolds containing predeveloped networks have the distinct benefit of being able to circumvent the need for vessel infiltration from the host, thereby accelerating tissue perfusion. This is an especially useful concept for the treatment of volumetric muscle loss, where without adequate perfusion myogenic cell transplantation is limited and fibrosis ensues. Fibrin has been previously investigated for skeletal muscle grafts, but limited data exists on its utility when both vascular cells and myogenic cells are included. In this study, we evaluate vascular density and co-culture conditions of rat myoblasts and human microvascular cells (MVCs) as well as rat primary microvascular fragment-derived stem cells (MVF-SCs) engrafted in fibrin gels for the development of a vascularized construct to accelerate skeletal muscle regeneration.

METHODS:
Fibrin using previously reported methods2 was fabricated at a density of 5.6 mg/mL. In the first study, 3D gels were seeded with MVCs (2.5 x 10^5, 5 x 10^5, 1 x 10^6) or with L6 rat myoblasts (10^5 L6/10^5 MVC, 5x10^5 L6/5x10^5 MVC or 10^5 L6/10^5 MVC per ml) for 7 days to evaluate the optimal seeding conditions for VEGF production. In the second study, MVF-SCs were evaluated as strategy means to achieve vascularization by seeding at 20,000 and 40,000/ml on matrigel and their capillary-like tube formation visualized. The 20,000 MVF-SC group was then cultured with 10^5 L6 myoblasts and cultured for 7 days and VEGF was measured. In both studies VEGF production was measured in supernatants and normalized to cell number using a dsDNA kit, and the groups were compared using 2-way ANOVA across time & materials with Tukey’s post hoc test (p<0.05).

RESULTS:
VEGF production was compared across different co-culture experiments in this study. When examining day 3 results, there is a decrease when L6 cells are cultured with either MVCs or MVF SCs.

DISCUSSION:
Both L6 myoblasts and MVCs (endothelial cells) secrete VEGF (Fig. 1A and 3A), however, when co-cultured for 3 days the effects are not additive (Fig. 1B) but are equivalent to L6 cells alone (Fig. 3A), and decrease by day 7 (Fig. 1B). The co-culture of L6 cells and MVF-SCs (a heterogeneous mixture of vascular cells and mesenchymal stem cells) results in a level of VEGF less than L6 cells alone. Collectively this is indicative of a feedback mechanism whereby VEGF is inhibited when L6 cells are cultured with MVF-SCs, but not MVCs. Despite these growth factor changes, the MVF SCs and L6s increased their interaction over time as the MVF SCs appear to associate with L6 cells.

CONCLUSIONS:
- Fibrin was shown to support both muscle, microvascular cell and primary stem cell growth over the study duration.
- Microvascular-derived stem cells demonstrate the sustained potential to form vascular networks without induction.

REFERENCES:

ACKNOWLEDGEMENTS:
This study was supported in part by DoD funds, US Army Medical Research Acquisition Activity (TG), and US Army Institute for Surgical Research Graduate Fellowship (BP).