Engineered Hyaluronic acid based Hydrogels for Survival and Transplantation of Stem Cells

Amit K. Jha¹,², Kevin. M. Tharp³, Jianqin Ye⁴, Jorge L. Santiago-Ortiz⁵, Wesley M. Jackson¹, David V. Schaffer¹,⁴, Yerem. Yeghiazarians⁵,⁶,⁷, and Kevin. E. Healy¹,²*

¹Department of Bioengineering, ²Department of Material Science and Engineering, ³Department of Nutritional Science and Toxicology, ⁴Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA. ⁵Department of Medicine, ⁶Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, ⁷Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA.

Introduction: Recently various cell-based therapies have been developed for the treatment of damaged or diseased tissues; however low cell survival and poor engraftment have resulted in limited success of these therapies. To improve the cell survival and engraftment, we have developed a novel hydrogel system of hyaluronic acid (HyA) that contain peptide sequences for cell attachment via binding of integrin receptors, heparin for presentation and modulation the sequester characteristics of exogeneously added growth factors and retention of endogenously produced growth factors, and enzymatically degradable matrix metalloproteinase (MMP) sensitive peptide crosslinks.¹, ² In this work, we have investigated the role of hydrogel components to promote cell survival, adhesion, endothelial cell differentiation and tubule formation using endogenous Sca-1⁺/CD45⁻ cardiac progenitor cells (CPCs). Optimized HyA hydrogels were used to implant CPCs subcutaneously in murine hindlimb to evaluate the survival, and engraftment of CPCs.

Methods: An HyA (Mw 500kDa) derivative carrying hydrazide groups (HyAADH) was synthesized using previous methods,³ and acryloxy succinimide (700 mg) was subsequently reacted to the HAADH solution (300mg, 100 mL DI water) to generate acrylate groups on the HyA (AcHyA). The AcHyA-RGD derivative was synthesized by reacting COGNGPRGDTYRAY (bss-RGD (15)) (10mg) with a AcHyA solution (25mg, 10mL DI water) at room temperature. Separately, thiolated-heparin was synthesized by conjugating cysteamine to the carboxylic groups of HyA using carbodiimide chemistry. Subsequently, these precursors of these hydrogels were tuned from 10Pa to 850Pa. Covalent conjugation of heparin (0.03 wt %) in the HyA network retained upto 70% of the TGFβ1 for three weeks. Subsequently, HyA hydrogels were used to investigate the influence of matrix parameters on survival, proliferation and vascular tube formation via the differentiation of endogenous cardiac progenitor Sca-1⁻/CD45⁺ cells (CPCs) into the endothelial cell lineage. In vitro encapsulated Sca-1⁻/CD45⁺ CPCs within the hydrogel network were viable, proliferated and formed vessel-like networks. Excess of immobilized heparin within HyA hydrogel was able to retain endogenously produced angiogenesis related proteins by CPCs. And, cell proliferation and tube formation can be tuned by altering the peptide density and modulus of the hydrogel.. In vivo, HyA hydrogels promoted CPC survival and neovascularization when implanted in the subcutaneous region of murine hind limbs. Therefore, we anticipate these HyA hydrogels are promising candidates for the application of cell transplantation.

Results: Synthesized AcHyA had ~ 28% conjugation of acrylate groups on the repeating units of HyA chains. The acrylate groups on AcHyA were used as the reactive handles for bioconjugation and crosslinking. AcHyA-RGD was prepared by a Michael Type I addition reaction between the cysteine of bss-RGD(15) and acrylate groups of available AcHyA. Thiolated-heparin was synthesized by conjugating cysteine to the carboxylic groups of HyA using

References: