3-D PEM Coatings to Deliver FGF-2 and Promote In vitro and In vivo Osteoprogenitor Cell Proliferation

E. Jacobs1,2, L. Zhu1, J. Woodman1, L. Charles1, M. Hurley1, G. Gronowicz2, L.T. Kuhn1,2
Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA1
Biomedical Engineering, University of Connecticut, Storrs, CT, USA2

Statement of Purpose: Bone regeneration and repair is markedly reduced in elderly mammals. Fibroblast growth factor-2 (FGF-2) is a potent stimulator of preosteoblast proliferation [1]. We hypothesize that FGF-2 is one of the missing factors that can rejuvenate elderly osteoblast progenitors because of its effects on proliferation and its signaling pathway that leads to increased production of bone morphogenetic protein-2 (BMP-2) [2]. A synergistic FGF-2/BMP-2 delivery system could be highly efficacious, especially if it can be achieved via a three-dimensional (3-D) bone graft material. The long-term goal of our research is to develop a sequential 3-D polyelectrolyte multilayer (PEM) delivery system capable of release of FGF-2 and then BMP-2 to stimulate proliferation and differentiation of osteoprogenitors in the elderly. Towards that aim, we report here a novel technique to apply PEM coatings to 3-D scaffolds for successful in vitro and in vivo FGF-2 delivery.

Methods: PEM coatings were prepared on 3.5 mm diameter scaffolds made of collagen/hydroxyapatite (Healos®, DePuy Spine Inc., Rayham, MA), by alternate 10 min bindings in 300 ul of 1 mg/ml poly L glutamic acid (PG-) or poly-L lysine (PL+) solutions in saline with 3 saline rinses between each, (Sigma, St. Louis, MO). Three bilayers were adsorbed. Recombinant Human FGF-2 (R & D Systems, Minneapolis, MN) (0.5 or 5 ng/ml for in vitro studies and 40 ng/ml for in vivo studies) was adsorbed on the PEM for 60 min. After each binding or rinse step the samples were centrifuged at 3000 rpm on a filter device to ensure removal of fluid from the inner most pores of the Healos® thereby allowing complete infiltration of the next solution. Scaffolds were UV sterilized before cell culture or implantation. Binding of FGF-2 to Healos® or Healos®/PEM was determined via ELISA (R & D Systems, Minneapolis, MN). In vitro cell attachment and proliferation on the 3-D Healos®/PEM/FGF-2 coatings were assessed with primary Col2.3GFP calvarial mouse cells [3] seeded at 10 x 10^5 cells/cm². Proliferative effects of the Healos®/PEM/FGF-2 coatings were determined using Alamar Blue assay (Invitrogen™ Life Technologies, Grand Island, NY). Statistical significances were determined by one-way ANOVA with Tukey post-tests. Scanning electron microscope (SEM) images and confocal images of the prepared scaffolds were acquired. For confocal imaging, a layer of BSA-Alexa Fluor® 488 was deposited rather than FGF-2. For in vivo assessment of the Healos®/PEM/FGF-2, the scaffolds were implanted into 3.5 mm calvarial defects in four month old CD-1 mice. Implanted scaffolds were removed after three days, cryosectioned, and immunostained with CD166 (ALCAM, marker for mesenchymal progenitor cells), using previously reported techniques [1].

Results: A uniform PEM coating can be achieved throughout porous 3-D Healos® without blocking the pores via centrifugation prior to each binding and rinse step (SEM of Fig. 1A). The PEM/BSA-488 coating was deposited around each fiber throughout the thickness of the Healos®, (confocal, Fig. 1B). By ELISA testing, FGF-2 binding efficiency to Healos® alone and to Healos®/PEM was 86.7% ± 3.0, and 91.5% ± 2.1 respectively. Col2.3GFP cells can successfully attach and proliferate in vitro on Healos®/PEM similarly to Healos® alone (Fig 2). The addition of FGF-2 to the PEM coating significantly increases proliferation, as seen by the Alamar Blue assay, (Fig. 2). Data shown is normalized to day 1 proliferation.

Implantation of Healos®/PEM/FGF-2 increased the number of CD166+ cells in the defect site and marrow relative to Healos® implantation alone (Fig. 3, 2 vs 1). The dashed lines in the images indicate the outline of the host bone. (1) and (2) show DAPI staining while (1') and (2') show CD166 staining, (asterisk is the Healos® autofluorescence). Thin arrows point to marrow cavity of the host bone that responds strongly to FGF-2 exposure (high CD166+). Larger arrows point to corresponding areas in the adjacent sections.

Conclusions: A new strategy for applying controlled release PEM coatings to 3-D fibrous scaffolds has been demonstrated. Addition of PEM/FGF-2 to Healos® significantly increases proliferation of progenitor cells in vitro and in vivo indicating activity of the growth factor is retained.


Acknowledgements: Funding provided from NIH NIDCR R01DE021103-02.

©2014 Society for Biomaterials