Chitin/Chitosan-Silver Nanoparticles as Dressing Materials for Donor Site Wounds

Rahim Jindani1, Shiara M. Ortiz-Pujols2, Carrie Neilsen2, Samuel Hudson1, Joel Sohn3, Bruce A. Cairns2, Martin W. King1, 4
1College of Textiles, North Carolina State University, Raleigh, NC, USA, 2Department of Surgery, University of North Carolina, Chapel Hill, NC, USA, 3Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA, 4College of Textiles, Donghua University, Shanghai, China. *E-mail: martin_king@ncsu.edu

Introduction: Split-thickness skin grafting (STSG) is a common reconstructive surgical procedure when autologous skin tissue is required. It is performed for the treatment of patients with second and third degree burns, as well as patients suffering from diabetic ulcers and lymphedema. STSG creates a donor site wound, from which a thin layer of epidermis and dermis is harvested for autologous transplantation [1]. Through our initial survey study involving 70 nurses, surgeons, therapists and researchers working in 31 burn and trauma centers across the southern USA, we have identified the most important requirements of a STSG wound dressing involve the need for: i) reduction in pain, ii) antibacterial properties, iii) non-adherence to the wound and iv) prevention of wound desiccation (Figure 1). Based on these results a fibrous hydrogel with the desired characteristics has been fabricated from β-chitin combined with silver nanoparticles and evaluated against commercially available products.

Material and Methods: Two sources of β-chitin were found for this study. The pens from Pacific Ocean Humboldt squids were donated by Hopkins Marine Station, Stanford, CA, and pen samples of Atlantic loligo squid were donated by Harvard University (Boston, MA). Mixtures of chitin and chitosan were obtained from these squid pens utilizing methanol and calcium chloride solvents [2]. Mixture of fibers and nanoparticles were freeze dried to obtain hydrogels. Ionic silver (Ag+) particles were added to the chitin/chitosan hydrogels so as to augment their antibacterial properties towards Escherichia coli. In order to determine their hemostatic response fresh porcine whole blood samples were obtained from the NCSU College of Veterinary Medicine [3].

Results: The bacteriostatic effect of the porous chitin/chitosan fibrous hydrogel structures was observed in comparison with the other dressing materials. The presence of silver ions generated a superior antibacterial effect compared to the chitin/chitosan materials, whose average zone of inhibition was observed to decrease after Day 3 (Figure 2).

The hemostatic response was associated with activation of platelets and leukocytes and the formation of fibrin. However, the timing and mechanism of thrombus formation was observed to depend on the presence of chitin/chitosan and/or nanosilver particles when in first contact with fresh whole blood (Figure 3).

Conclusions: Figure 2 indicates that β-chitin/chitosan together with ionic silver provides a superior antibacterial effect compared to β-chitin/chitosan alone. In addition, it appears to provide a different cellular activation path, which affects the timing of thrombin formation and achieving hemostasis. Work is continuing to evaluate these and the other desirable clinical characteristics of wound dressings for donor site wounds following STSG.