Fabrication of porous carbonate apatite and its *in vivo* evaluation <u>Kunio Ishikawa</u>, Nguyen Xuan Thanh Tram, Kanji Tsuru Department of Biomaterials, Faculty of Dental Science, Kyushu University

Introduction:

B-type CO₃Ap, which is the apatite found in bone, is known to be fabricated based on the compositional conversion using precursors such as calcium carbonate and α -tricalcium phosphate (α -TCP: α -Ca₃(PO₄)₂). CO₃Ap was found to be resorbed by osteoclast and replaced to bone similar to autograft. Since replacement of CO₃Ap to bone is done by the osteoclastic and osteoblastic cells, interconnected porous CO₃Ap is desired for quicker replacement to bone. We have previously reported that CO₃Ap foam can be prepared using polyurethane foam as template. However, mechanical strength of the CO₃Ap foam was weak due to its too high porosity (95%).

In the present method porous $\mathrm{CO}_3\mathrm{Ap}$ was fabricated using polyurethane foam as porogen.

Methods:

Polyurethane foam was used as porogen. Some polyurethane foam was coated with polyurethane to regulate the diameter of the polyurethane strut. The polyurethane foams were filled with $Ca(OH)_2$ and heated at 700°C under CO_2/O_2 atmosphere. Porous $CaCO_3$ thus prepared was then immersed in Na_2HPO_4 solution for compositional transformation based on dissolution-precipitation.

Composition was analyzed using XRD, FT-IT and CHN analysis. Mechanical strength was evaluated by means of compressive strength. Structure was confirmed by SEM and μ -CT.

The cylindrical shaped porous CO_3Ap and hydroxyapatite (HAp) foams were implanted in the tibia of 17wks rabbits, and evaluated by means of μ -CT.

Results and discussion:

Strut of the polyurethane foams became larger with polyurethane coating as shown in Fig. 1. As a result, the pore size of porous CO_3Ap became larger when polyurethane coated polyurethane foam was employed.

Composition of the porous CaCO₃ was found to convert to CO₃Ap keeping its macroscopic structure by immersing in Na₂HPO₄ solution. FT-IR spectra confirmed the formation of B-type CO₃Ap in which PO₄ is replaced by CO₃, and is the CO₃Ap found in bone. Carbonate contents of the CO₃Ap was approximately 11mass%, and was independent to the presence and absence or the number of polyurethane coating. The compressive strength of the porous CO₃Ap (5MPa for non coating) was much higher than CO₃Ap foam and decreased with the increase in the strut diameter as shown in Fig. 2.

Fig. 3 summarizes the μ CT images when porous CO₃Ap and HAp were implanted in rabbit tibia. In the case of porous HAp, no significant change in its structure was observed at least within 12 months. In contrast, porous CO₃Ap was resorbed gradually with time and replaced to bone.

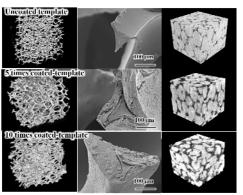


Fig. 1 SEM images of the polyurethane foam and porous CO_3Ap fabricated using the polyurethane foams as porogen.

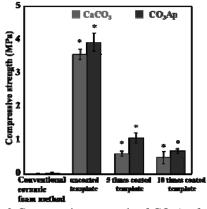


Fig. 2 Compressive strength of CO₃Ap foam and porous CO₃Ap along with their precursor CaCO₃.

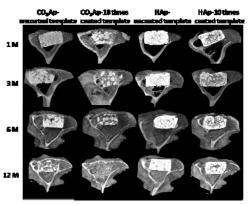


Fig. 3 The μ CT images of the porous CO₃Ap and HAp with different pore size when implanted in rabbits tibia for up to 12 months.

Conclusion: CO_3Ap will be replaced with bone whereas HAp keep its structure in bone. Porous structure was found to be an important factor for the replacement of CO_3Ap to bone.