Immunogenicity of a Polyinosinic-Polyctydylid Acid (Poly(I:C))-Adjuvanted Microparticle Vaccine for Leishmaniasis

Qian Wang\(^1\), Meagan A. Barry\(^1\), Christopher A. Seid\(^1\), Elissa M. Hudspeth\(^1\), Charles P. McAtee\(^1\), Michael J. Heffernan\(^1\)

\(^1\)Baylor College of Medicine

Statement of Purpose: There is a need for a human vaccine against leishmaniasis. Vaccines based on recombinant proteins have great potential for clinical translation; however, conventional aluminum adjuvants steer protein vaccines toward a T-helper 2 (T\(_{H2}\))-type immune response, whereas protection against Leishmania parasites requires a T\(_{H1}\)-type response. In this study, the Leishmania donovani 36-kDa nucleoside hydrolase (NH36), a highly conserved protein among Leishmania species \(^1\), and the adjuvant polyinosinic:polycytidylic acid (poly(I:C), low molecular weight (PICL)), a TLR3 agonist which stimulates synthesis of IFN-\(\gamma\) to induce a T\(_{H1}\)-biased immune response \(^2\), were formulated and encapsulated in poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs). We hypothesized that PLGA MP-formulated NH36 protein and PICL (MP/NH36/PICL) would elicit a stronger antigen-specific, T\(_{H1}\)-biased immune response in comparison to control formulations including PBS, NH36-containing MPs (MP/NH36) and non-MP (soluble) formulations (NH36, NH36/PICL).

Methods: Microparticle Formulation: MPs containing NH36 were formed using a double emulsion, solvent evaporation method, using 2 mg NH36 and 100 mg PLGA. PICL was ion-paired with DOTAP to form a complex soluble in dichloromethane, and PICL MPs were synthesized using a single emulsion method with 5 mg PICL and 100 mg PLGA. Loading of NH36 was measured by microBCA, and PICL by spectroscopic absorption at 290 nm.

In Vivo: BALB/c female mice (n = 5) were vaccinated subcutaneously with MPs containing NH36 (40 \(\mu\)g) +/- PICL (8, 20, or 60 \(\mu\)g), or with soluble NH36 (40 \(\mu\)g) +/- PICL (20 \(\mu\)g), all in 100 \(\mu\)L volume. Mice were boosted 3 weeks later and sacrificed after another 2 weeks. Splenocytes were analyzed for IFN-\(\gamma\)+ cells (by ELISPOT), IFN-\(\gamma\) production (by ELISA), and proliferation. Serum IgG antibodies were analyzed by ELISA.

Results:

- Formulation: MPs were well-formed, and sizes ranged from 500 nm to 2 \(\mu\)m for NH36 and 1 to 4 \(\mu\)m for PICL (Figure 1). NH36 loading efficiency ranged from 49.5% to 108.1% and PICL from 42.0% to 53.5%.
- Serum antibody response: IgG2a responses, which are associated with T\(_{H1}\) bias, were consistently higher in the mice immunized with NH36/PICL or MP/NH36/PICL vaccine formulations (Figure 2). A similar trend was observed in IgG2b responses (data not shown).
- IFN-\(\gamma\) production: Mice immunized with NH36/PICL or MP/NH36/PICL generated a higher frequency of IFN-\(\gamma\)-producing cells than mice immunized without PICL (Figure 3). The dose comparison in MP/NH36/PICL groups suggested that 20 \(\mu\)g is the optimal dose of MP-formulated PICL. A similar trend was observed with secreted IFN-\(\gamma\) ELISA (data not shown).

Conclusions: Results showed that PICL enhanced the T\(_{H1}\)-associated IgG2a and IgG2b titers, and also increased splenocyte IFN-\(\gamma\) production. In comparison to the soluble NH36/PICL group, microparticle formulation significantly increased T\(_{H1}\)-biased cellular immune responses as evidenced by higher frequency of IFN-\(\gamma\)-producing cells and higher total secreted IFN-\(\gamma\). These results indicate a strong potential for the MP/PICL combination as an adjuvant/delivery system for a Leishmania protein vaccine.

References: