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Statement of Purpose:  In this presentation, we report 
microwave sintering of magnesium-calcium phosphates 
with predominantly amorphous phases and calcium 
phosphate and magnesium phosphate. Different Mg:Ca 
ratios on densification, microstructure evolution and 
mechanical properties were studied. The sintered 
amorphous materials of calcium-magnesium phosphate 
was solid solutions of β-tricalcium phosphate doped with 
magnesium with a chemical formula of Ca (3-x) Mgx (PO4)2.  

Methods: The amorphous magnesium-calcium phosphate 
(aMCP), MgP and aHA powders were prepared according 
to a precipitation method from ethanol medium which 
previously published by our group. Table 1 represents the 
composition of the powders. Powders were pressed to 
form compacted pellets prior to heat treatment via 
microwave. 1 g of each powder sample was put into a 1 
cm diameter cylindrical steel die and pressed using a 
uniaxial hydraulic press at 10 ksi for 3 min. The 
compacted pellets were sintered in a semi-industrial grade 
microwave sintering samples were heated at 1150 °C for 
about 20 minutes, after which they were allowed to cool 
to room temperature [1-2].  

Table 1 composition of powders 

Results:  

 

Fig 1 (a-c) X-ray pattern of β-T(Ca, Mg) P). Peaks w represent 
Whitlockite, peaks S represent Standfieldit. (d) X-ray pattern of 
sintered MgP, peaks S represents Struvite, peaks with N represent 
Newberiyte, peaks F with represent Trimagnesium Bis(phosphate(v)), 
Peaks with Χ represents (e) X-ray pattern of HA/β-TCP, Peaks H 
represent HA and peaks T represent β-TCP. (f) Shift of peak positions 
of the β-T ((Ca, Mg) P) due to the substitution of Mg 2+. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Fig 2 Microstructural evolution of β-T(Ca, Mg) P)(H6, H7, H8), 
HA/β-T(Ca, P) (H10) with an average size of 2.7 µm and  MgP 
sintered (H9) with average particle size of 8.5µm when sintered 
at 1150°C . 

Fig 3 (left) Density variation of β-T(Ca, Mg)P ) with different 
Mg content (H6, H7, H8) , HA/TCP (H10)  and MgP (H9) when 
sintered at 1150°C. (right) Average Vicker hardness variation of  
β-T(Ca, Mg) P ) with different Mg content (H6, H7, H8), 
HA/TCP (H10) and  MgP (H9) 

Conclusion: The amorphous magnesium-calcium 
phosphate transferred into nano crystalline β-TCP upon 
microwave sintering method The results indicate that 
initial Mg:Ca ratio control the magnesium substitution 
amount in β–TCP structure. Increasing magnesium 
substitution up to a certain amount into the TCP lattice 
improved mechanical properties and the densification 
process while accelerating the sintering kinetics for all  
Mg ratios 
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Mmole 
Mg:Ca (Mg+Ca): 

P 
H6 22.5 22.5 22.5 1 2 
H7 15 30 22.5 0.5 2 
H8 30 15 22.5 2 2 
H9 45 - 28 - 1.63 
H10 - 45 28 - 1.63 


