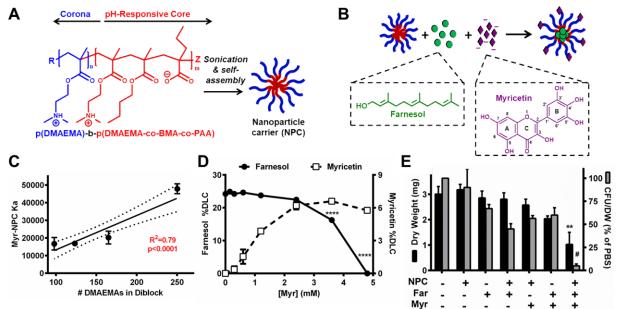
Dual Antibacterial Drug Loaded Nanoparticles Synergistically Improve Anti-Oral Biofilm Treatments

Kenneth R. Sims Jr.¹, Brian He¹, Julian Maceren¹, Yuan Liu², Geelsu Hwang², Hyun Koo², and Danielle S. W. Benoit¹ ¹ University of Rochester; ² University of Pennsylvania


Statement of Purpose: Tooth decay, predominantly orchestrated by Streptococcus mutans, is the most common disease worldwide and is caused by biofilm formation on the tooth surface [1,2]. We have established pH-responsive nanoparticle carriers (NPCs) capable of loading the membrane disrupting agent farnesol (Far) and binding to tooth, pellicle, and biofilm surfaces [3,4]. However, this approach modestly affected bacterial viability yielding only ~1 log colony forming unit (CFU) reduction against in vitro biofilms [3,4]. To enhance antibiofilm efficacy, we sought to co-load and deliver farnesol plus a potentially synergistic drug to biofilms using NPCs. S. mutans secretes glucosyl-transferases (Gtfs), which catalyze biofilm formation by adsorbing to the salivary pellicle and producing exopolysaccharide (EPS) matrix [1]. Therefore, the flavonoid myricetin (Myr), which inhibits Gtf activity and EPS production necessary for biofilm formation [5], was evaluated for incorporation into the NPCs. NPCs co-loaded with Myr and Far to improve anti-biofilm efficacy by first blocking Gtf-mediated EPS matrix production and then killing remaining bacteria were investigated. Methods: Diblock co-polymer NPCs synthesized via reversible addition-fragmentation chain transfer polymerization containing 2-(dimethylamino) ethyl methacrylate (DMAEMA), butyl methacrylate (BMA),

and 2-propylacrylic acid (PAA) (Figure 1A) were loaded with Myr and Far in PBS (Figure 1B). Myr-NPC association constants (K_a) were determined using fluorescence and absorbance spectroscopy (Figure 1C) and loading capacities for each drug were measured as a function of Myr concentration using high performance liquid chromatography (Figure 1D). Gtf inhibition and anti-biofilm efficacy were assessed based on biofilm dry weight (DW) and CFU per DW results (Figure 1E) from *S. mutans* 48-hour *in vitro* biofilms formed on salivacoated hydroxyapatite disks.

Results: Overall, results revealed that electrostatic interactions occur between Myr and the NPC corona with K_a values from 1×10^4 M⁻¹ to 5×10^4 M⁻¹ (Figure 1C). This interaction did not inhibit Far loading in the hydrophobic NPC core for Myr concentrations below 2.4 mM (Figure 1D), so NPCs co-loaded with Myr and Far were tested against 48-hour in vitro S. mutans biofilms. These studies vielded a ~60% reduction in DW and a ~95% reduction in CFU/DW compared to the control group (Figure 1E), thus revealing the synergy of this dual-loaded NPC approach. Conclusions: This study confirmed the ability of a pHresponsive NPCs co-loaded with Myr electrostatically and Far hydrophobically to synergistically improve S. mutans anti-biofilm efficacy in vitro. These findings offer key insights about NPC drug delivery systems as anti-biofilm treatments against oral diseases, such as tooth decay. **References:**

- [1] Bowen W, et al. Trend Microbiol. 2017;26(3):229-42.
- [2] Ozdemir D. Int J Biology. 2013;5(4):55-61.
- [3] Horev B, et al. ACS Nano. 2015;9(3):2390-404.
- [4] Zhou J, et al. J. Mater. Chem. B. 2016;4: 3075-085.
- [5] Ren Z, et al. J. Oral Microbiol. 2016;8(1): 31095.

Acknowledgements: National Institutes of Health (R01 DE018023 to HK and DB, and F31 DE026944 to KS) and National Science Foundation (DMR 1206219 to DB).

Figure 1. A. Scheme showing NPC polymer composition. **B.** Cartoon illustrating the hypothesized co-loading mechanism where farnesol loads in the NPC core while myricetin interacts electrostatically with the cationic NPC corona. **C.** Scatter plot showing myricetin-NPC K_a values increase with the number of DMAEMA monomers in the diblock co-polymer using NPCs with different Block 1 Mn values and similar Block 2 Mn values. **D.** Myricetin and farnesol drug loading capacity (% DLC) curves for a co-loaded NPC. **** p<0.0001 via One-way ANOVA with Dunnett's test. **E.** Anti-biofilm efficacy of NPCs co-loaded with Far and Myr *in vitro* results in ~60% reduction in biofilm dry weight (DW, left y-axis) and ~95% reduction in colony forming units per DW (CFU/DW, right y-axis) against *S. mutans* 48-hour biofilms. ** p<0.01 and # p<0.0001 via One-way ANOVA with Dunnett's test.