Controlled Anchoring of SPIO Nanoparticles on Silica Templates as Sensitive MRI Probes

Jing Tian¹, Na Ma¹, Yuchao Guo¹, Zhiyong Wang¹, Chunchao Xia², Fabao Gao², Qiyong Gong², Bin Song², Hua Ai^{1,2,*}

¹National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China

²Department of Radiology, West China Hospital, Sichuan University, Chengdu, China

Introduction: Controlled self-assembly of organic/inorganic hybrid materials have important applications in magnetic resonance imaging (MRI). In this study, hydrophobic superparamagnetic iron oxide (SPIO) nanocrystals coated with alkylated PEI are controlled anchored on the silica nanoparticles. The multilayer ballon-ball structure obtained from LbL technique is particularly attractive as efficient MRI probes, since their special structures can greatly improve their T₂ relaxivity. At the magnetic field of 1.5 T, SiO₂/Alkyl-PEI-SPIO Nanocomposites has relatively higher T_2 relaxivities up to more than 400 Fe mM⁻¹s⁻¹ than T_2 relaxivity of 171 Fe mM⁻¹s⁻¹ with single Alkyl-PEI-SPIO. Next, we labeled SKOV-3 with single Alkyl-PEI-SPIO and SiO₂/Alkyl-PEI-SPIO Nanocomposites. Composites have shown much better biocompatibility during cell labeling than the single Alkyl-PEI-SPIO, and composite labeled cells displayed higher image contrast.

Materials: Tergitol NP-9,1-hexanol, NH4OH (35%), tetraethyl orthosilicate (TEOS, 99%) and cyclohexane were purchased from Fluka. 1-iodododecane, Branched PEI2K, 1,2-hexadecanediol, oleic acid, oleylamine, Iron(III) acetylacetonate, benzyl ether, Poly(allylamine) hydrochloride (PAH, Mw 15kD), Poly(anetholesulfonic acid, sodium salt) (PAS, Mw 10kD) were purchased from Aldrich Chemical Co.. Fetal bovine serum, RPIM 1640 medium, penicillin/streptomycin were purchased from Hyclone.

Methods: 1) Branched PEI2K was obtained from Aldrich and reacted with 1-iodododecane in ethanol following literature procedures¹. Silica templates², SPIO nanocrystals³ and Alkyl-PEI-SPIO nanocomposites are prepared following previous publication. 2) Self-Assembly of SiO₂/Alkyl-PEI-SPIO nanocomposites: SiO₂ nanotemplates were first coated by two bilayers of PAH/PSS through LbL self-assembly, then positively charged Alkyl-PEI-SPIO were controlled anchored onto SiO₂/(PAH/PSS)₂ through adjusting salt concentration and the presence of free Alkyl-PEI2k. The imaging sensitivity of SiO₂/Alkyl-PEI-SPIO system was examined under a clinical MRI scanner (Siemens) at the field of 1.5 Tesla. 3) Cell Viability and Cell Labeling efficiency: SKOV-3 cells were cultured in 10% fetal bovine serum RPIM 1640 medium with 1% penicillin/streptomycin at 37°C in 5% CO₂. MTT test was performed to quantify the cell viability. MRI study of these cells was performed at 3 Tesla (Siemens) using a clinical knee coil.

Results: The LbL self-assembly process was verified by DLS and zeta-potential (Fig. 1). DLS analysis shows that the peak of nanocomposite diameter shifted from 68 to 106 nm for subsequent coatings respectively, indicating that polyelectrolytes are successfully incorporated on nanoparticle surface during self-assembly (Fig. 1-a). Zeta-potential results also demonstrate the successful assembly of multilayers of PAH/PAS/ Alkyl-PEI-SPIO on silica

templates. (Fig. 1-b)

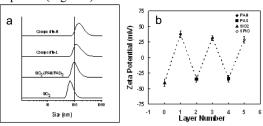


Fig. 1. (a) Number-weighted distributions of hydrodynamic diameters of nanoparticles determined by DLS measurement. (b) Zeta-potential of bare and coated silica nanoparticles versus the number of adsorption steps.

To evaluate the effect of SiO₂/Alkyl-PEI-SPIO in MRI imaging, nanocomposites are tested under a 1.5T MRI scanner. The MRI signal intensity was compared between Alkyl-PEI-SPIO and SiO₂/Alkyl-PEI-SPIO composites. Alkyl-PEI-SPIO has a T_2 relaxivity of 171 Fe mM⁻¹s⁻¹. In comparison, our nanocomposites have a relatively higher T_2 relaxivity of 260 Fe mM⁻¹s⁻¹ and 412 Fe mM⁻¹s⁻¹, showing that higher anchoring density with higher T_2 relaxivity. The MTT results indicate that the SiO₂/Alkyl-PEI-SPIO has the better biocompatibility than Alkyl-PEI-SPIO (Fig. 2).

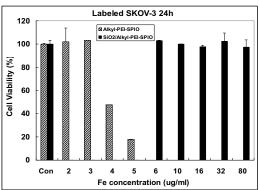


Fig. 2. Cytotoxicity test of the Alkyl-PEI-SPIO and ${\rm SiO_2/Alkyl-PEI-SPIO}$ formulation with SKOV-3.

Conclusion: Controlled self-assembly of Alkyl-PEI-SPIO on silica templates led to the discovery of MRI probes with high T_2 relaxivity. SiO₂/Alkyl-PEI-SPIO has better biocompatibility comparing to Alkyl-PEI-SPIO nanoparticles. This kind of composites may be used as sensitive MRI probes.

References: 1. Liu G, et al. Biomaterials, in press; 2. Chang, S. et al. J. Am. Chem. Soc.1990; 116, 6739; 3. Sun, S., et al. J. Am. Chem. Soc. 2004, 126, 273.