Characterization of Dynamic Shape-Memory (Meth)Acrylate Networks for Tissue Engineering Applications

Erin Hewett¹, Kathryn Smith², Kenneth Gall³, Zvi Schwartz^{1,4}, Barbara D. Boyan^{1,3} ¹Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, ²MedShape

Solutions, Inc., Atlanta, GA, ³School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, ⁴Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX

Statement of Purpose: Micro-scale roughness has been shown to increase osteoblast cell differentiation over smoother surfaces but decrease cellular proliferation [1]. Thus, a smart material that can provide a smooth surface to promote initial cell attachment, spreading and proliferation, and over time display micro-scale roughness to enhance differentiation could be beneficial for tissue engineering applications. In this study, we create one such polymer by fine-tuning the properties of an acrylate based shape-memory network and mimicking the topography of control and grit-blasted titanium through soft lithography. **Methods:** Acrylate solutions were achieved by first combining varied ratios of benzyl methacrylate (BZMA) and benzyl acrylate (BZA) with 5% w/v 1,12dodecanediol dimethyacrylate (DDDMA) as the crosslinker and 0.5% w/v 2,2 dimethyoxy 2phenylacetophenone (DMPA) as the photoinitiator. PDMS molds were made using a Sylgard 184 kit with a base to curing agent ratio of 10:1, poured over titanium sheets (control "PT" or grit-blasted "GB"), allowed to degas, and baked at 150° C for 10 min. Sheets of shapememory polymer were created by photopolymerizing the previous networks between glass slides with or without PDMS molds with 1-mm glass spacers. Glass transition temperature (T_g) was determined by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Laser-cut 15 mm disc samples were then compressed using an MTS Insight for up to 40% strain and allowed to recover in phosphate buffered saline at 37° C for up to 7 days, and roughness measured via laser confocal microscopy.

Results: To achieve a shape-memory polymer that would recover at body temperature, networks were created with seven weight ratios of BZA:BZMA at a constant wt% DDDMA (Fig. 1). Wet samples for DSC were soaked in ddH₂O to determine if water uptake would decrease the T_o (7 day data were not statistically different from 24 hour data). The onset of the T_g determined by DMA for BZA:BZMA:DDDMA 30:65:5 (boxed in Fig 1) falls near

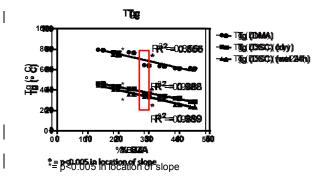
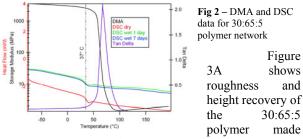


Fig 1 – T_g dependence on soaking and BZA concentration from 15 to 45


this temperature (Fig 2),. This composition was used for subsequent compression and recovery experiments.

Figure

shows

and

made

from GB Ti (pGB) with up to 40% strain compared to the smoother polymer made from PT Ti (pPT, dashed line). Transfer and recovery of the complex microtopography can be seen in Fig 3B.

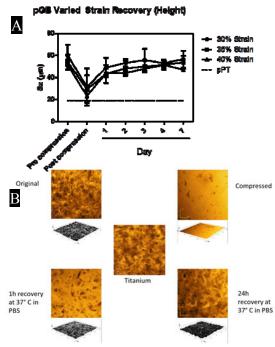


Fig 3 – (A) 7 day recovery of roughness (Sa) and peak-to-valley height (Sz) for strains from 30-40%. (B) Confocal images of polymer network recovery and initial titanium surface

We have developed a process for transferring micro-scale surface features from metals to shape-memory polymers (SMPs) via soft lithography and have shown that these polymers recover over time irrespective of compressive strain of up to 40%. We are able to tune the glass transition temperature Tg of these SMPs to that of homeostasis for future biological experiments on this non-toxic SMP, and are in the process of tailoring recovery rate at that temperature.

References: Olivares-Navarrete, R, et al. PNAS 2008;105(41):15767-72