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Statement of Purpose: Over 90% of hospitalized patients 

receive some form of infusion therapy, in which drugs are 

delivered intravenously.[1] These treatments have several 

limitations, including uneven drug distribution and the 

inability of drugs to reach target sites at required doses.[2] 

Current research to address these issues focuses on using 

drug-loaded polymers that can be implanted at the target 

site. Thermally-induced shape memory polymer (SMP) 

elastomers have the capability to deliver drugs via passive 

burst release that can last over 700 hours, but cannot be 

activated remotely.[3] Magnetic hydrogel nanocomposites 

have the capability to deliver drugs on-demand via external 

stimulus (i.e. magnetic field) to deliver drugs, but can only 

be used for a maximum of 7 hours.[4] Both approaches are 

limited to a single release.  

To improve upon these systems, we propose to use 

magnetically-responsive SMPs with temporally-controlled 

delivery combined with variations in polymer chemistry to 

tune shape recovery rates.[5], [6] These polymers are 

synthesized with uniform drug concentration and varied 

magnetic particle concentrations and strained into a fixed, 

secondary shape that limits drug diffusion. Upon 

application of an alternating magnetic field at a fixed 

frequency, the magnetic particles are excited, which 

triggers shape recovery and subsequent drug release. By 

varying magnetic particle concentration within a single 

implant, we can control drug release over multiple remote 

triggers.[7] Here, we present a proof-of-concept for the 

proposed magnetically responsive SMPs.  
 

Methods: Microparticle synthesis: Fluorescently-labelled 

PEG-PLGA microparticles loaded with acridine orange 

were synthesized using a microfluidics system as 

previously described.[8] Magnetic nanoparticle synthesis: 

Magnetic particles (Fe3O4) were prepared via wet chemical 

reduction as described by Chaki et al.[9] Sodium 

borohydride (2.5M) was used to reduce ferric chloride 

hexahydrate (0.1M)  in a 1:4 volume ratio aqueous solution 

to form Fe3O4 using a wet chemical reduction method.[8] 

Vigorous mixing was maintained during dropwise addition 

of ferric chloride to sodium borohydride, and resulting 

Fe3O4 precipitates were washed with DI water and 

methanol before drying overnight at 50°C. Magnetic 

particle hydrodynamic diameter was measured using a Zeta 

analyzer. SMP synthesis: Shape memory polyurethane 

films were synthesized by mixing varying combinations of 

hydroxyls and isocyanates to tune crosslink density and 

hydrophilicity. Hydroxyl components consisted of N, 

N,N’,N’-tetrakis-2 hydroxypropyl ethylenediamine 

(HPED), triethanolamine (TEA), and trimethylolpropane 

(TMPAE). Isocyanates consisted of hexamethylene 

diisocyante (HDI) and 2,2,4-trimethyl hexamethylene 

diisocyante (TMHDI). To increase crosslink density, 

polymers were UV crosslinked using di and tetrafunctional 

crosslinkers via thiolene click chemistry.[10] Fluorescent 

microparticles and/or magnetic nanoparticles were mixed 

into the system at varying concentrations prior to 

crosslinking. Characterization: Glass transition 

temperatures (Tg’s) were quantified using differential 

scanning calorimetry. Dye release before and after shape 

recovery was characterized using spectroscopic 

measurements. Shape memory properties in response to 

heat and a magnetic field were characterized to determine 

effects of nanoparticle contents on recovery rates.  
 

Results: Films were loaded with varying concentrations of 

magnetic particles to compare differences in actuation 

time. Higher nanoparticle concentrations provided 

complete shape recovery under a magnetic field, while 

lower concentrations resulted in partial recovery Figure 

1a. In a separate study, films were synthesized with a 

gradient of hydrophobicity and subjected to volume 

recovery experiments in water. The more hydrophilic side 

recovered faster than the hydrophobic side, providing a 

potential mechanism for varying release rates within a 

single scaffold. 
 

 
Figure 1. Foam characterization: a) volume recovery under magnetic 

field, b) variation in volume recovery times in 37°C water based on 

hydrophobicity and glass transition temperature. 
 

Conclusions: Thus far, we have developed two 

mechanisms for tuning shape recovery rates: Fe3O4 particle 

concentrations under magnetic field and hydrophobicity. 

These mechanisms could be used together to provide 

remotely-triggered drug delivery with precise time frames 

for SMP recovery and subsequent drug release. Current 

work focuses on loading films with drug-loaded 

microparticles to characterize drug release during shape 

recovery under a magnetic field and/or in body temperature 

water. In the long-term, this system could be used to 

sequentially deliver different drugs from the same scaffold 

at controlled time frames.  
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